卡诺图三个1怎么圈
1、首先画出逻辑函数的卡诺图。
2、然后对卡诺图中填“1”小方格画相邻区域圈。
3、最后将每个圈中互反变量消去,保留公共变量,所得对应的与项再逻辑“或”起来,得到最简与或表达式。
三人表决器卡诺图怎么画
首先简单的2个变量的卡诺图
将所有相邻为1的项圈起来
我们先看横的圈,我们会发现,无论A为0或者1,结果均为1,故结果与A无关,而且B为0时,结果为1,故第一个圈我们得出为B’
我们先看竖的圈,我们会发现,无论B为0或者1,结果均为1,故结果与B无关,而且A为0时,结果为1,故第一个圈我们得出为A'
综合两个圈我们得出Y=A'+B'
现在看四个变量的,如图,将所有相邻的1圈起来,画圈时只能是1个,2个,4个,8个等相邻的1画成一个圈,即2的N次方个相邻的1画在一起,不能3个,5个,6个,7个1画成一个圈。注意变量状态是00,01,11,10。
第一个圈,如图,单独一个1,为A'B'C'D'。
8/12
第二个圈,无论B为0或1,结果均为1,说明与B无关,结果为AC'D',
第三个圈,无论C为0或1,结果均为1,说明与C无关,故为A'BD,
第四个圈,无论D为0或1。
卡诺图的圈法
1.卡诺图的一个重要特征是,它从图形上直观、清晰地反映了最小项的相邻关系。
2.四个小方格组成一个大方格、或组成一行(列)、或处于相邻两行(列)的两端、或处于四角时,所的表的最小项可以合并,合并后可消去两个变量。
3.八个小方格组成一个大方格、或组成相邻的两行(列)、或处于两个边行(列)时,所代表的最小项可以合并,合并后可消去三个变量。
至此,以3、4变量卡诺图为例,讨论了2,4,8个最小项的合并方法。依此类推,不难得出n个变量卡诺图中最小项的合并规律。
归纳起来,n个变量卡诺图中最小项的合并规律如下:
(1)卡诺圈中小方格的个数必须为2^m个,m为小于或等于n的整数。
(2)卡诺圈中的2^m个小方格有一定的排列规律,具体地说,它们含有m个不同变量,(n-m)个相同变量。
(3)卡诺圈中的2^m个小方格对应的最小项可用(n-m)个变量的“与”项表示,该“与”项由这些最小项中的相同变量构成。
(4)当m=n时,卡诺圈包围了整个卡诺图,可用1表示,即n个变量的全部最小项之和为1。
作图:
第一步:作出函数的卡诺图。
第二步:在卡诺图上圈出函数的全部质蕴涵项。按照卡诺图上最小项的合并规律,对函数F卡诺图中的1方格画卡诺圈。为了圈出全部质蕴涵项,画卡诺圈时在满足合并规律的前题下应尽可能大,若卡诺圈不可能被更大的卡诺圈包围,则对应的“与”项为质蕴涵项。
第三步:从全部质蕴涵项中找出所有必要质蕴涵项。在卡诺图上只被一个卡诺圈包围的最小项被称为必要最小项,包含必要最小项的质蕴涵项即必要质蕴涵项。为了保证所得结果无一遗漏地覆盖函数的所有最小项,函数表达式中必须包含所有必要质蕴涵项。
第四步:求出函数的最简质蕴涵项集。若函数的所有必要质蕴涵项尚不能覆盖卡诺图上的所有1方格,则从剩余质蕴涵项中找出最简的所需质蕴涵项,使它和必要质蕴涵项一起构成函数的最小覆盖。
归纳起来,卡诺图化简的原则是:
☆ 在覆盖函数中的所有最小项的前提下,卡诺圈的个数达到最少。
☆ 在满足合并规律的前提下卡诺圈应尽可能大。
☆ 根据合并的需要,每个最小项可以被多个卡诺圈包围。
以下是我自己的画圈体会:
卡诺图怎么画
利用卡诺图化简逻辑函数的步骤如下:
第一步:将逻辑函数变换为最小项之和的形式
第二步:画出表示该逻辑函数的卡诺图
第三步:找出可以合并的最小项并画出合并圈
第四步:写出最简的与-或表达式
在利用卡诺图化简逻辑函数时,关键在于画合并圈。合并圈画得不同,逻辑函数的表达式也不相同。因此画合并圈时应注意以下几点:
①首先要找出孤立的1方格并画圈。
②合并圈的范围越大越好,但必须包含(i=0,1,2,3…)个1方格,这样能消去的变量就越多。
③合并圈的个数越少越好,因为合并圈的个数与化简结果中乘积项的个数相对应,圈数越少意味着与-或表达式中与项越少。
④每个合并圈中至少要包含一个其它合并圈中没有包含的1方格,这样才能保证这个合并圈不是多余的。
⑤卡诺图中所有的1方格至少要被圈一次,不能有漏画的1方格。
这样,把每个合并圈相对应的与项“加”起来,就得到最简的与-或表达式。
同理的方法,只要合并圈改为针对卡诺图中的0方格进行,找出可合并的最大项,就可得到逻辑函数的最简或-与表达式。
合并最大项的规律与合并最小项的规律基本一致。不同之处在于,合并最大项时必须找出0方格的相邻性。每个合并圈可由(i=0,1,2,3…)个0方格构成,每个合并圈对应于一个或项,该或项由圈内取值不变的变量相或来构成,其中取值为0的对应原变量,取值为1的对应反变量。然后将每个合并圈对应的或项进行相与,便得到最简的或-与表达式
对于卡诺图pos圈怎么画和卡诺图圈完咋写式子的总结分享本篇到此就结束了,不知你从中学到你需要的知识点没 ?如果还想了解更多这方面的内容,记得收藏关注本站后续更新。
标签: 卡诺
②文章观点仅代表原作者本人不代表本站立场,并不完全代表本站赞同其观点和对其真实性负责。
③文章版权归原作者所有,部分转载文章仅为传播更多信息、受益服务用户之目的,如信息标记有误,请联系站长修正。
④本站一律禁止以任何方式发布或转载任何违法违规的相关信息,如发现本站上有涉嫌侵权/违规及任何不妥的内容,请第一时间反馈。发送邮件到 88667178@qq.com,经核实立即修正或删除。